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Abstract. On the basis of the quantum q-oscillator algebra in the framework of quantum groups and non-
commutative q-differential calculus, we investigate a possible q-deformation of the classical Poisson bracket
in order to extend a generalized q-deformed dynamics in the classical regime. In this framework, classical
q-deformed kinetic equations, Kramers and Fokker-Planck equations, are also studied.

PACS. 05.20.Dd Kinetic theory – 45.20.-d Formalisms in classical mechanics – 02.20.Uw Quantum groups

1 Introduction

The study of quantum algebras and quantum groups has
attracted a lot of interest in the last few years, and stim-
ulated intensive research in several physical fields in view
of a broad spectrum of applications, ranging from cosmic
strings and black holes to the fractional quantum Hall ef-
fect and high-Tc superconductors [1].

From the seminal work of Biedenharn [2] and
Macfarlane [3] it is clear that the q-calculus, originally
introduced at the beginning of last century by Jack-
son [4] in the study of the basic hypergeometric function,
plays a central role in the representation of the quantum
groups [5]. In fact it has been shown that it is possible
to obtain a “coordinate” realization of the Fock space of
the q-oscillators by using the deformed Jackson derivative
(JD) or the so-called q-derivative operator [6–8].

In this paper we want to introduce a q-deformation of
the PB (q-PB) in order to define a generalized q-deformed
dynamics in a q-commutative phase-space. For this pur-
pose we begin with the observation that the creation and
annihilation operators in the quantum q-deformed SUq(2)
algebra corresponds classically to q-commuting coordi-
nates in a q-phase space and that the commutation rela-
tion between the standard quantum operators corresponds
classically to the Poisson bracket (PB).

The motivation for our goal lies in the fact that a
full understanding of the physical origin of q-deformation
in classical physics is still lacking because it is not clear
if there exists a classical counterpart to the q-deformed
quantum mechanics inspired by the study of quantum
groups. The problem of a possible q-deformation of classi-
cal mechanics was dealt with in reference [9] where a q-PB
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was obtained starting from a point of view different from
the one adopted in this paper. In order to introduce the
classical correspondence of the quantum q-oscillator, we
shall follow the main approach based on the following idea.
The (undeformed) quantum commutation relations are in-
variant under the action of SU(2) and, as a consequence,
the q-deformed commutation relations are invariant under
the action of SUq(2). Analogously, since the (undeformed)
PB is invariant under the action of the symplectic group
Sp(1), we have to require that q-PB must satisfy invari-
ance under the action of the q-deformed symplectic group
Spq(1).

2 Non-commutative differential calculus

Since the creation and annihilation operators in the quan-
tum q-deformed SUq(2) algebra correspond classically to
non-commuting coordinates in a q-phase-space, in this sec-
tion we introduce the q-deformed plane which is generated
by the non-commutative elements x̂ and p̂ fulfilling the re-
lation [10]

p̂ x̂ = q x̂ p̂, (1)

which is invariant under GLq(2) transformations. Hence-
forward, for simplicity, we shall limit ourselves to consider
the two-dimensional case.

From equation (1) the q-calculus on the q-plane can
be obtained formally through the introduction of the
q-derivatives ∂̂x and ∂̂p [11]

∂̂p p̂ = ∂̂x x̂ = 1, (2)

∂̂p x̂ = ∂̂x p̂ = 0. (3)
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They fulfill the q-Leibniz rule

∂̂p p̂ = 1 + q2 p̂ ∂̂p + (q2 − 1) x̂ ∂̂x, (4)

∂̂p x̂ = q x̂ ∂̂p, (5)

∂̂x p̂ = q p̂ ∂̂x, (6)

∂̂x x̂ = 1 + q2 x̂ ∂̂x, (7)

together with the q-commutative derivative

∂̂p ∂̂x = q−1 ∂̂x ∂̂p. (8)

It is easy to see that in the q → 1 limit one recovers the
ordinary commutative calculus. Let us outline the asym-
metric mixed derivative relations, equations (4) and (7),
in x̂ and in p̂. These properties arise directly from the
non-commutative structure of the q-plane defined in equa-
tion (1).

We recall now that the most general function on the
q-plane can be expressed as a polynomial in the q-variables
x̂ and p̂

f(x̂, p̂) =
∑

i,j

cij x̂i p̂j , (9)

where we have assumed the x̂-p̂ ordering prescription (it
can always be accomplished by means of Eq. (1)). Thus,
taking into account equations (4)−(7), we obtain the ac-
tion of the q-derivatives on the monomials

∂̂x(x̂n p̂m) = [n]q x̂n−1 p̂m, (10)

∂̂p(x̂n p̂m) = [m]q qn x̂n p̂m−1, (11)

where we have introduced the q-basic number

[n]q =
q2n − 1
q2 − 1

. (12)

A realization of the above q-algebra and its q-calculus can
be accomplished by the replacements [12]

x̂ → x, (13)
p̂ → p Dx, (14)

∂̂x → Dx, (15)

∂̂p → Dp Dx, (16)

where

Dx = qx ∂x , (17)
Dxf(x, p) = f(q x, p), (18)

is the dilatation operator along the x direction (reducing
to the identity operator for q → 1), whereas

Dx =
q2 x ∂x − 1
(q2 − 1)x

, (19)

Dp =
q2 p ∂p − 1
(q2 − 1) p

, (20)

are the JD with respect to x and p. Their action on an
arbitrary function f(x, p) is

Dx f(x, p) =
f(q2 x, p) − f(x, p)

(q2 − 1)x
, (21)

Dp f(x, p) =
f(x, q2 p) − f(x, p)

(q2 − 1) p
. (22)

Therefore, as a consequence of the non-commutative struc-
ture of the q-plane, in this realization the x̂ coordinate
becomes a c-number and its derivative is the JD whereas
the p̂ coordinate and its derivative are realized in terms of
the dilatation operator and JD.

3 q-Poisson Bracket and q-symplectic group

With the formulation of the q-differential calculus, we are
now able to introduce a q-PB. Since the undeformed PB is
invariant under the action of the undeformed symplectic
group Sp(1), we will assume as previously stated, as a fun-
damental point, that the q-PB must satisfy the invariance
property under the action of the q-deformed symplectic
group Spq(1) with the same value of the deformed param-
eter q used in the construction of the quantum plane.

Let us start by recalling the classical definition of a
2-Poisson manifold, which is a two dimensional Euclidean
space IR2 generated by the position and momentum vari-
ables x ≡ x1 and p ≡ x2 and equipped with a PB. By in-
troducing f(x, p) and g(x, p), two arbitrary smooth func-
tions, the PB is defined as [13]

{
f, g

}
= ∂xf ∂pg − ∂pf∂xg. (23)

Equation (23) can be expressed in a compact form
{
f, g

}
= ∂if J ij ∂jg, (24)

where J ij are the entries of the unitary symplectic matrix
J given by

J =
(

0 1
−1 0

)
. (25)

Remarkably, equation (24) does not change under the
action of a symplectic transformation Sp(1) on the phase-
space. As is well known equation (24) can also be ex-
pressed as {

f, g
}

= {xi, xj} ∂if ∂jg, (26)

so that, if we know the PB between the generators xi

we can compute the PB between any pair of functions f
and g.

By requiring that the q-PB must be invariant under
the action of the q-symplectic group Spq(1), we are lead
to introduce the following q-deformed PB between the
q-generators x̂i [14]

{
x̂i, x̂j

}

q
= ∂̂x x̂i ∂̂p x̂j − q2 ∂̂p x̂i ∂̂x x̂j . (27)
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It is easy to verify the following fundamental relations
{
x̂, x̂

}

q
=

{
p̂, p̂

}

q
= 0, (28)

{
x̂, p̂

}

q
= 1, (29)

{
p̂, x̂

}

q
= −q2, (30)

which coincide with the one obtained in reference [9]. In
particular, from equations (29) and (30) it follows that
the q-PB is not antisymmetric. A similar behavior appears
also in the quantum q-oscillator theory [2,3].

By means of equations (13)−(16), a realization of our
generalized q-PB can be written as

{
f, g

}

q
= Dx f(x, p Dx)Dp g(q x, p Dx)

− q2 Dp f(q x, p Dx)Dx g(x, p Dx) (31)

where f and g are identified with x or p, respectively.

4 q-Deformed kinetic equations

On the basis of the above classical q-deformed theory, we
shall now derive the corresponding classical kinetic equa-
tions based on the q-calculus. Starting from the realization
of the q-algebra, defined in equations (13)−(16), we are
able to write the Kramers equation corresponding to the
equation of motion for the distribution function f(x, p; t),
in position and momentum space, describing the motion
of particles of mass m in an external field F (x) [15]. In
the one-dimensional case it can be generalized as follows

∂f(x, p; t)
∂t

=
{
− p

m
DxDx −DpDx [Jq

1 (p Dx) + F (x)]

+ Jq
2 (Dp Dx) (Dp Dx)

}
f(x, p; t), (32)

where Jq
1 (p Dx) and Jq

2 are the drift and diffusion coeffi-
cients, respectively. Specifying the action of the dilatation
operator Dx along the x direction, the above Kramers
equation can be written as

∂f(x, p; t)
∂t

= − p

m
Dx f(q x, p; t) −Dp [Jq

1 (p Dx)

+ F (q x)]f(q x, p; t)] + Jq
2 D2

p f(q2 x, p; t), (33)

where D2
p means the double application of the JD in the

momentum space. Without any external force, for a ho-
mogeneous system undergoing a constant diffusion, the
above generalized Kramers equation reduces to the fol-
lowing q-deformed Fokker-Planck equation

∂f(p; t)
∂t

= Dp

[
− Jq

1 (p) + Jq
2 Dp

]
f(p; t). (34)

If we postulate a generalized Brownian motion in a
q-deformed classical dynamics by the following definition

of the drift and diffusion coefficients

Jq
1 (p) = − γ p

(
q2 Dp + 1

2

)
,

Jq
2 = γ m kT , (35)

where γ is the friction constant, T is the temperature of
the system and Dp is the dilatation operator in the mo-
mentum space, the stationary solution fst(p) of the above
Fokker-Planck equation can be obtained as a solution of
the following stationary q-differential equation

Dpf(p) = − p

2 m kT

[
q2 f(qp) + f(p)

]
. (36)

It is easy to show that the solution of the above equation
can be written as

fst(p) = Eq

[
− p2

2m kT

]
, (37)

where Eq[x] is the q-deformed exponential function, well-
known in q-calculus [5], defined in terms of the series

Eq[x] =
∞∑

k=0

xk

[k]q!
(38)

where [k]q! is the q-basic factorial [5] defined as [k]q! =
[k]q [k − 1]q · · · [1]q.

5 Conclusions

We have shown that q-calculus can play a crucial role
in the formulation of a generalized q-classical theory, de-
fined by means of the introduction of a q-PB. In analogy
with quantum group invariance properties of the quantum
q-oscillator theory, the q-PB has been defined by assum-
ing the invariance under the action of Spq(1) group with
its derivatives acting on the q-deformed non-commutative
plane invariant under Glq(2) transformations. Therefore
such a classical q-deformation theory can be seen as the
analogue of q-oscillator deformation in the quantum the-
ory. In this framework, we have studied the classical
q-deformed kinetic equations, Kramers and Fokker-Planck
equations and we have found, as a stationary solution,
the well-known q-deformed exponential function defined
in terms of a series. This opens the possibility of introduc-
ing a classical counterpart of the quantum q-deformations.
We expect that such a classical q-deformed dynamics can
be very relevant in several physical applications such as,
in the resolution of integrable systems. Further important
applications would be in the formulation of effective the-
ory of complex many-body systems and in the framework
of a generalized thermostatistics [16] in a manner simi-
lar to what classical Tsallis [17] or Kaniadakis [18] ther-
mostatistics does with respect to the Boltzmann-Gibbs
theory.
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